
Unsupervised Phoneme Discovery Using Markov

Models

Programming and Synthesis 2

March 2025

This document introduces the process of unsupervised phoneme dis-
covery using Markov Models and clustering techniques. It is designed for
Master’s students in Electronic Music Composition as part of the ”Pro-
gramming and Synthesis 2” course. The focus is on exploring creative ap-
plications for audio synthesis, machine learning, and experimental sound
design.

1 Introduction

In experimental music and sound design, machine learning can provide tools
for discovering patterns in sound. One such application is the unsupervised
discovery of phonemes, the fundamental sound units of speech. This text
introduces a method using Markov Models and clustering to segment and
analyze phoneme-like structures in an unknown language, useful for both lin-
guistic exploration and generative sound synthesis.

1.1 Creative Use Cases

• Algorithmic Composition: Extract phoneme-like structures and use
them the synthesis of new sounds.

• Timbre Morphing: Apply discovered phoneme transitions to resynthe-
size vocal-like textures. Or if not dealing with speech audio, to resynthesize
audio that mimics the structures of the input.

• Live Performance Tools: Build an interactive system where Markov-
generated sounds influence synthesis in real time.

• Sound Sculpting: Use phoneme sequences as control signals for granular-
like synthesis.

• Other?: Discuss your ideas for the creative use or misuse of this tech-
nique.

1



2 Conceptual Overview

The process of unsupervised phoneme discovery is an attempt to extract
the fundamental building blocks of speech without any prior linguistic knowl-
edge. Instead of predefined phoneme categories, we use machine learning tech-
niques to identify patterns in the sound and represent them as probabilistic
states in a Markov Model.

How to use!!: you will use this python script, create its necessary virtual en-
vironment to install required libraries and make sure you have a train speech.wav
and test speech.wav audio files that you recorded previously, in the same folder
where the script is. These audio files need to be at 16 kHz sampling rate.

The steps of our code are as follows:

• Audio Framing: Input is a continuous waveform. To analyze it meaning-
fully, we divide it into short, overlapping frames. Each frame is a snapshot
of the sound over a short period (e.g., 25ms).

• Spectral Feature Extraction: The Fast Fourier Transform (FFT) is ap-
plied to each frame to extract spectral information, giving us a frequency-
domain representation of each frame.

• Clustering with K-means: We use K-means clustering to group frames
with similar spectral features into discrete categories, effectively forming
a ”codebook” of fundamental speech components. In our case we are
arbitrarily choosing the number of clusters k to be 50.

• Markov State Assignment: Each frame is assigned to the nearest clus-
ter center, forming a sequence of states that represent the speech.

• Markov Transition Modeling: By analyzing how states(clusters) tran-
sition from one to another, we compute a Markov Transition Matrix that
captures the statistical relationships between different phoneme-like units.

• Markov-Based Synthesis: Using the learned transition probabilities,
we generate new speech-like sounds by probabilistically selecting frames
based on their transitions.

This approach is powerful because it does not require labeled phoneme data.
Instead, it lets the structure of speech emerge naturally, making it useful for
both scientific analysis and artistic exploration.

2



3 Implementation

3.1 Main Function: Running the Full Pipeline

The following function integrates all the steps into a complete workflow:

1 def main_pipeline(train_audio , test_audio , k_clusters =50):

2 """ Full pipeline: From audio to Markov matrix and synthesis

using k-means clustering."""

3

4 # 1. Frame the training audio and extract FFT features

5 train_frames , sr = frame_audio(train_audio)

6 train_features = compute_fft(train_frames)

7

8 # 2. Create the codebook using K-means.

9 kmeans_model = build_codebook(train_features , k=k_clusters)

10

11 # 3. Process the test audio and assign states

12 test_frames , _ = frame_audio(test_audio)

13 test_features = compute_fft(test_frames)

14

15 assigned_states = assign_to_codebook(test_features ,

kmeans_model)

16

17 # 4. Compute and visualize the Markov transition matrix

18 markov_matrix = compute_markov_matrix(assigned_states ,

k_clusters)

19 visualize_markov_matrix(markov_matrix)

20

21 # 5. Display sample state sequence and matrix

22 print(f"\nSample State Sequence: {assigned_states [:20]}")

23 print(f"\nMarkov Transition Matrix (shape {markov_matrix.shape

}):\n", markov_matrix)

24

25 # 6. Synthesize audio based on the Markov model

26 synthesized_audio = synthesize_audio(test_frames ,

assigned_states , markov_matrix , length =2000)

27 save_synthesized_audio(synthesized_audio , sr)

Listing 1: Main pipeline for phoneme discovery and synthesis.

Explanation: The function executes the pipeline in a structured manner:

1. It extracts FFT features from a reference (training) audio file.

2. It uses K-means clustering to create a set of representative sound units
with similar spectral features (categories). This is the codebook

3. It processes a separate (test) audio file, assigning states to each of its
framed snippets based on the trained codebook.

4. It computes the Markov Transition Matrix, which models how these
states transition over time.

5. It generates a new audio sequence by stochastically (probabilistically)
selecting frames based on the learned transitions.

3



3.2 Step 1: Frame the Audio

1 import librosa

2

3 def frame_audio(audio_file , frame_size_ms =25, hop_size_ms =10, sr

=16000):

4 """ Frame the audio file into overlapping frames."""

5 y, sr = librosa.load(audio_file , sr=sr)

6 frame_size = int(sr * frame_size_ms / 1000)

7 hop_length = int(sr * hop_size_ms / 1000)

8 frames = librosa.util.frame(y, frame_length=frame_size ,

hop_length=hop_length).T

9 return frames , sr

Listing 2: Framing audio into overlapping segments.

3.3 Step 2: Compute FFT Features

1 import numpy as np

2

3 def compute_fft(frames):

4 """ Compute the FFT magnitude spectrum for each frame."""

5 fft_frames = np.abs(np.fft.rfft(frames , axis =1))

6 return fft_frames

Listing 3: Computing FFT magnitude spectrum for each frame.

3.4 Step 3: Cluster FFT Features Using K-Means

1 from sklearn.cluster import KMeans

2

3 def build_codebook(features , k=50):

4 """ Cluster the FFT features using K-means to create the

codebook."""

5 kmeans = KMeans(n_clusters=k, random_state =0, max_iter =300,

n_init =10)

6 kmeans.fit(features)

7 return kmeans

Listing 4: Clustering FFT features using K-means.

3.5 Step 4: Compute Markov Transition Matrix

1 def compute_markov_matrix(states , num_states):

2 """ Compute the Markov state transition matrix."""

3 matrix = np.zeros((num_states , num_states))

4 for (i, j) in zip(states [:-1], states [1:]):

5 matrix[i, j] += 1

6 matrix /= matrix.sum(axis=1, keepdims=True) + 1e-10 #

Normalize

7 return matrix

Listing 5: Computing Markov state transition probabilities.

4



3.6 Step 5: Generate Audio Using Markov Model

1 def synthesize_audio(frames , assigned_states , markov_matrix , length

=1000):

2 """ Synthesize audio by selecting frames based on Markov

transitions."""

3 synthesized_audio = []

4 current_state = np.random.choice(np.arange(len(markov_matrix)))

5 for _ in range(length):

6 frame_indices = np.where(assigned_states == current_state)

[0]

7 if len(frame_indices) == 0:

8 current_state = np.random.choice(np.arange(len(

markov_matrix)))

9 continue

10 chosen_frame = frames[np.random.choice(frame_indices)]

11 synthesized_audio.extend(chosen_frame)

12 next_state_probs = markov_matrix[current_state]

13 current_state = np.random.choice(np.arange(len(

markov_matrix)), p=next_state_probs)

14 return np.array(synthesized_audio)

Listing 6: Synthesizing new audio from Markov model.

3.7 Step 6: Visualize Markov Transition Matrix

1 import matplotlib.pyplot as plt

2 import seaborn as sns

3

4 def visualize_markov_matrix(markov_matrix):

5 plt.figure(figsize =(10, 8))

6 sns.heatmap(markov_matrix , cmap="viridis", square=True)

7 plt.title("Markov State Transition Matrix")

8 plt.xlabel("Next State")

9 plt.ylabel("Current State")

10 plt.show()

Listing 7: Visualizing the Markov state transition matrix.

3.8 Step 8: Save Synthesized Audio

1 import soundfile as sf

2

3 def save_synthesized_audio(audio_array , sr, output_path="

synthesized_audio.wav"):

4 sf.write(output_path , audio_array , sr)

5 print(f"Synthesized audio saved to {output_path}")

Listing 8: Saving the synthesized audio to a file.

5



4 Future Challenges and Next Steps

This tutorial covers the fundamental steps for unsupervised phoneme discovery
and Markov-based synthesis. However, there are several directions for further
research and experimentation:

• Try other sources and explore: Instead of speech, try to use other
sources of musical audio or any sound you can think of to understand
what the script is doing.

• Use different parameters: Play with the parameters of the steps (size
of snippets of audio, sampling rate, number of clusters, etc.)

• Try Feedback: One idea is to use the output audio as input for another
run of the script. It should converge into digital noise.

• Use other features: Instead of computing FFTs, try with other meth-
ods, such as MEL Frequency Cepstral Coefficients (MFCC).

• Improving Phoneme Separation: Exploring different clustering meth-
ods such as Gaussian Mixture Models (GMMs) to achieve better phoneme
separation.

• Explore different parameters and windowing in re-synthesis: In
this example, we are concatenating snippets of audio without overlap. You
could try to implement overlapping and windowing (i.e. Triangular, Hann,
and other windows).

• Explore options for [re]synthesis: Right now we are simply concate-
nating snippets of audio. But audio could be re-synthesized using the
spectrogram data directly. You could research how this is done.

• Applying Deep Learning: Using neural networks to refine phoneme
representation and improve synthesis quality.

• Enhancing Temporal Structure: Investigating higher-order Markov
models to capture longer phoneme transitions.

• Implement HMM when phonemes = group of clusters: As of now,
we are identifying a phoneme with one of the clusters. But this means that
a phoneme is assumed to be 25ms long. In relaity a phoneme is longer
and made of several clusters put together. This is a different model that
needs to find that relationship. It would use a training algorithm called
Baum-Welch. This is of course already implemented in some libraries, is
just a matter of knowing how to use it.

• Live Performance Integration: Using real-time Markov-based phoneme
synthesis as an interactive performance tool.

6



5 Conclusion

This method allows us to extract meaningful phoneme-like units from
speech and explore them creatively in our context of electronic music/sound
manipulation. Potential applications include voice-based synthesis, stochas-
tic sound generation, and AI-assisted vocal textures, conceptual art-
work, sound design, pranking your neighbours, etc.

Further Reading

[1] Aalto University. Speech processing. https://wiki.aalto.fi/display/

ITSP/Introduction+to+Speech+Processing, 2024. Accessed: March 5,
2025.

[2] BuiltIn. Markov chains: A gentle introduction. https://builtin.com/

machine-learning/markov-chain, 2024. Accessed: March 5, 2025.

[3] Antoine Caillon and Philippe Esling. Rave: A variational autoen-
coder for fast and high-quality neural audio synthesis. arXiv preprint
arXiv:2111.05011, 2021.

[4] Mousumi Malakar and Ravindra B Keskar. Progress of machine learning
based automatic phoneme recognition and its prospect. International Jour-
nal of Speech Technology, 2023.

[5] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
et al. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

7

https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://builtin.com/machine-learning/markov-chain
https://builtin.com/machine-learning/markov-chain


Appendices
Complete Script

1 import librosa

2 import numpy as np

3 from sklearn.cluster import KMeans

4 import matplotlib.pyplot as plt

5 import seaborn as sns

6 import sys

7 import soundfile as sf

8

9

10 # ------------------------ STEP 1: FRAME AUDIO

------------------------

11 def frame_audio(audio_file , frame_size_ms =25, hop_size_ms =10, sr

=16000):

12 """ Frame the audio file into overlapping frames."""

13 y, sr = librosa.load(audio_file , sr=sr)

14 frame_size = int(sr * frame_size_ms / 1000)

15 hop_length = int(sr * hop_size_ms / 1000)

16 frames = librosa.util.frame(y, frame_length=frame_size ,

hop_length=hop_length).T

17 return frames , sr

18

19

20 # ------------------------ STEP 2: COMPUTE FFT

------------------------

21 def compute_fft(frames):

22 """ Compute the FFT magnitude spectrum for each frame."""

23 fft_frames = np.abs(np.fft.rfft(frames , axis =1))

24 return fft_frames

25

26

27 # ------------------------ STEP 3: K-MEANS CLUSTERING

------------------------

28 def build_codebook(features , k=50):

29 """ Cluster the FFT features using K-means to create the

codebook."""

30 print(f"Clustering {features.shape [0]} frames into {k} clusters

...")

31 kmeans = KMeans(n_clusters=k, random_state =0, max_iter =300,

n_init =10)

32 kmeans.fit(features)

33 print("Codebook creation complete.")

34 return kmeans

35

36

37 # ------------------------ STEP 4: ASSIGN STATES

------------------------

38 def assign_to_codebook(features , kmeans_model):

39 """ Assign each frame to the nearest codebook cluster center."""

40 assigned_states = kmeans_model.predict(features)

41 return assigned_states

42

43

44 # ------------------------ STEP 5: MARKOV TRANSITION MATRIX

8



------------------------

45 def compute_markov_matrix(states , num_states):

46 """ Compute the Markov state transition matrix."""

47 matrix = np.zeros((num_states , num_states))

48 for (i, j) in zip(states [:-1], states [1:]):

49 matrix[i, j] += 1

50 matrix /= matrix.sum(axis=1, keepdims=True) + 1e-10 #

Normalize

51 return matrix

52

53

54 # ------------------------ STEP 6: VISUALIZE MARKOV MATRIX

------------------------

55 def visualize_markov_matrix(markov_matrix):

56 """ Visualize the Markov state transition matrix."""

57 plt.figure(figsize =(10, 8))

58 sns.heatmap(markov_matrix , cmap="viridis", square=True)

59 plt.title("Markov State Transition Matrix")

60 plt.xlabel("Next State")

61 plt.ylabel("Current State")

62 plt.show()

63

64

65 # ------------------------ STEP 7: SYNTHESIZE AUDIO

------------------------

66 def synthesize_audio(frames , assigned_states , markov_matrix , length

=1000):

67 """ Synthesize audio by probabilistically selecting frames based

on the Markov matrix."""

68 synthesized_audio = []

69 current_state = np.random.choice(np.arange(len(markov_matrix)))

70 print(len(markov_matrix))

71 print(np.where(assigned_states == current_state)[0])

72 for _ in range(length):

73 frame_indices = np.where(assigned_states == current_state)

[0]

74 if len(frame_indices) == 0:

75 current_state = np.random.choice(np.arange(len(

markov_matrix)))

76 continue

77

78 chosen_frame = frames[np.random.choice(frame_indices)]

79 synthesized_audio.extend(chosen_frame)

80

81 # Select next state based on transition probabilities

82 next_state_probs = markov_matrix[current_state]

83 current_state = np.random.choice(np.arange(len(

markov_matrix)), p=next_state_probs)

84

85 return np.array(synthesized_audio)

86

87

88 # ------------------------ STEP 8: SAVE SYNTHESIZED AUDIO

------------------------

89 def save_synthesized_audio(audio_array , sr, output_path="

synthesized_audio.wav"):

90 """ Save the synthesized audio to a file."""

9



91 sf.write(output_path , audio_array , sr)

92 print(f"Synthesized audio saved to {output_path}")

93

94

95 # ------------------------ MAIN PIPELINE ------------------------

96 def main_pipeline(train_audio , test_audio , k_clusters =50):

97 """ Full pipeline: From audio to Markov matrix and synthesis

using k-means clustering."""

98

99 # 1. Frame the training audio and extract FFT features

100 train_frames , sr = frame_audio(train_audio)

101 train_features = compute_fft(train_frames)

102

103 # 2. Create the codebook using K-means.

104 kmeans_model = build_codebook(train_features , k=k_clusters)

105

106 # ===========

107

108 # 3. Process the test audio and assign states

109 test_frames , _ = frame_audio(test_audio)

110 test_features = compute_fft(test_frames)

111

112 assigned_states = assign_to_codebook(test_features ,

kmeans_model)

113

114 # 4. Compute and visualize the Markov transition matrix

115 markov_matrix = compute_markov_matrix(assigned_states ,

k_clusters)

116 visualize_markov_matrix(markov_matrix)

117

118 # 5. Display sample state sequence and matrix

119 print(f"\nSample State Sequence: {assigned_states [:20]}")

120 print(f"\nMarkov Transition Matrix (shape {markov_matrix.shape

}):\n", markov_matrix)

121

122 # 6. Synthesize audio based on the Markov model

123 synthesized_audio = synthesize_audio(test_frames ,

assigned_states , markov_matrix , length =2000)

124 save_synthesized_audio(synthesized_audio , sr)

125

126

127 # ------------------------ RUN THE SCRIPT ------------------------

128 if __name__ == "__main__":

129 # Provide two audio files (can be the same if testing)

130 train_audio_file = "train_speech.wav" # Reference audio for

building the codebook

131 test_audio_file = "test_speech.wav" # Audio to analyze and

synthesize from

132

133 # Run the pipeline

134 main_pipeline(train_audio_file , test_audio_file , k_clusters =50)

Listing 9: Full implementation of phoneme discovery and synthesis.

10


	Introduction
	Creative Use Cases

	Conceptual Overview
	Implementation
	Main Function: Running the Full Pipeline
	Step 1: Frame the Audio
	Step 2: Compute FFT Features
	Step 3: Cluster FFT Features Using K-Means
	Step 4: Compute Markov Transition Matrix
	Step 5: Generate Audio Using Markov Model
	Step 6: Visualize Markov Transition Matrix
	Step 8: Save Synthesized Audio

	Future Challenges and Next Steps
	Conclusion
	Appendices

