
Deconvolution Assignment

Programming and Synthesis - Tutorial 1
Roberto Becerra

November 20, 2024

This tutorial and assignment explains the basics of Fourier analysis, Con-
volution and Deconvolution through a Python code example that demon-
strates their working principle. By now you are probably well acquainted
with the concepts of Fourier Transform / Analysis and Convolution. But
just in case, let us go through some of them as we prime the way for this
assignment.

This text contains a few formulas, but don’t be intimidated by them!! as
I will try to explain them bit by bit. If you still had any issues, we can discuss
during the next lecture. All in all, they are here for the sake of building a
conceptual framework. Anyway, you can skip to the code assignment section
directly if you wish to.

The task in this assignment will be to record a sound file and complete the
code that you will be given together with this document. The code imports
a sweep.wav file and a sweep-wet.wav file, performs Fourier Transforms on
them and uses Deconvolution to find the impulse response that you will be
able to use in whichever convolution reverb plugin you may know or use.

How to work on this assignment

You will be given this document along 2 more files: - deconvolution.py -
sweep.wav

Your task will be to record another wav file sweep-wet.wav and to com-
plete the code in deconvolution.py step by step in the instructions further
down this text.

1

You will only have to edit the code that is between this comments:

########################

START YOUR CODE HERE

########################

and

########################

END YOUR CODE HERE

########################

Once you have completed the task, please upload your resulting ir.wav
file along with your sweep-wet.wav and your resulting python file deconvolu-
tion.py to our moodle assignment activity: https://moodle.lmta.lt/mod/
assign/view.php?id=16272

The Fourier Theorem and Fast Fourier Trans-

form (FFT) - intuition

The Fourier theorem states that any periodic signal can be expressed as the
sum of a series of sine and cosine waves, each with specific amplitudes, fre-
quencies, and phases. This decomposition is fundamental in signal processing
and provides the foundation for operations like convolution and deconvolu-
tion.

The digital version Fourier transform, the Discrete Fourier Transform
(DFT), converts a time-domain signal x[n] into its frequency-domain repre-
sentation X[f]:

X[f] =
N−1∑
n=0

x[n]e−j2πfn/N (1)

Here, x is the signal that is dependent on time t. X upper case is the
resulting Fourier transform of small x , and f stands for frequency. We could
say that X is the amplitude per each sample (a moment in time) n, whereas
X is the energy per each frequency f present in the signal x.

Programming and Synthesis November 20, 2024

https://moodle.lmta.lt/mod/assign/view.php?id=16272
https://moodle.lmta.lt/mod/assign/view.php?id=16272

The summing symbol
∑N−1

n=0 means that we scan and sum through every
sample n from n = 0 and to n = N − 1, where N is the length of the input
signal buffer. Effectively, when scanning all samples x[n], we multiply them
with the term e−j2πfn/N , which represents a sine and a cosine at frequency
f as they would behave over the same number of samples. The 2π means
360° or a whole cycle at frequency f . If this multiplication between x and
the sine and cosine is like a comparison: if there is a match, the summation
will accumulate to a large number, otherwise the summation will cancel itself
and give values very close to zero for that frequency f .

A thing to remember is that [n] is the n-th sample in a buffer of length
N taken from signal x. This buffer size is the processing chunk in real time
digital audio, such as the one you configure in your DAW when you want to
adjust latency.

The term e−j2πfn/N is used since it is a simpler, more compact way to
express the presence of both a cosine and a sine component in the signal we
are analysing. This is because of an equivalence called the Euler’s formula:

e−j2πfn/N = cos

(
2πfn

N

)
− j sin

(
2πfn

N

)
(2)

This means that the result of energy on the spectrum X at frequency f
is represented by a bit of cosine and a bit of sine waves, which can be plotted
in an x, y Cartesian unit circle, from where we can obtain information about
the accumulated sum of the amplitude or the amount of energy (the size of
the blue line), and phase of the frequency f (the phasee is the angle theta
θ).

Programming and Synthesis November 20, 2024

Real (cos(θ))

Imaginary (−j sin(θ))

e−jθ

cos(θ)

−j sin(θ)

θ

Figure 1: The unit circle showing the relationship between cos(θ) and
−j sin(θ).

We can imagine as the Fourier transform generating a circle like the one
in Figure 1 once for each of the frequency bins f in the spectrum buffer X.

The Fast Fourier Transform (FFT) is an efficient algorithm for computing
the DFT, significantly reducing the computation time, which is especially
important for high-resolution audio signals. This is what we find in most
modern software, like python or Max.

Applications in Audio Processing

The Fourier Transform and its efficient computation through the FFT have
numerous applications in audio processing, sound design, and musical com-
position. Some key examples include:

- Frequency Analysis: Analyze the spectral content of a sound.
- Convolution and Deconvolution: Used in creating reverb, where the

characteristics of a real acoustic space can be applied to a dry recording.
- Sound Design: Modify and manipulate the spectral components of

sounds to create textures.
- Spectral Processing: Implement effects such as spectral filtering, spectral

delay, etc.

Programming and Synthesis November 20, 2024

- Pitch Shifting and Time Stretching: Use FFT information to modify
the pitch or duration of a sound.

- Noise Reduction and Restoration: Isolate unwanted noise in the spectral
domain .

- Additive Synthesis: Create complex sounds by summing sine waves of
varying frequencies, amplitudes, and phases.

- Cross-Synthesis: Combine the spectral characteristics of one sound with
the time-domain envelope of another.

- Spectral-Based Compositional Techniques**: Explore structure of sounds
for spectral composition.

In this tutorial, we will use the FFT to perform deconvolution, as division
in the frequency domain which is the opposite of convolution. This operation
is particularly useful for applications such as impulse response processing, re-
moving the effect of a room from a recording, or extracting the reverberation
characteristics of a specific space for use in creative or corrective audio tasks.
This is why it is also known as dereverberation.

What is Convolution?

Convolution is a mathematical operation that combines two signals to pro-
duce a third signal. In audio, this is often used to apply the characteristics
of an impulse response (e.g., a room’s acoustics) to another signal.

The good news is that Convolution can be calculated by simply multiply-
ing the spectrum of one signal by the spectrum of another. In our case by
multiplying the spectrum of x (X) by the spectrum of h (H), where h and
H stand for impulse response signal and spectrum respectively.

Y [f] = X[f] ∗H[f] (3)

This means that we first have to get the spectrum of the signals, i.e. by
using an FFT and then we multiply them.

Convolution, impulse responses, reverb and sweeps.

As mentioned briefly before, convolutions is widely used to apply the reverb
of a space to a dry sound source. This is done by convolving the sound source
with the impulse response of a space.

Programming and Synthesis November 20, 2024

This so called impulse response is short piece of audio that contains the
characteristics of the reverb of a space (or system, i.e. a delay effect). It is
called impulse response because it is a short recording of an impulse (some-
thing like a bang) inside of a space or system. The recording captures the
frequency response and decay of a sound in the space or system. This bang
could be quite literally a gunshot bang, because a very short impulse like this
theoretically contains all frequencies, and we want to excite the space with
all possible frequencies and record how it behaves.

Figure 2: Example of an Impulse Response Signal. The plot shows the
amplitude of the response over time.

In practice, the gunshot approach is not that accurate, because it its not
exactly repeatable. Instead, all the frequencies are synthesized and played
back on the space one after the other, in a fast sequence, using a so called
sine sweep.

Attached together with this document you will have also a file sweep.wav
which you will use for this assignment.

The process you have to do is as follows: You play the sweep.wav file over
a loudspeaker (i.e. your laptop speakers) in the space you want to capture
the impulse response from, and at the same time you record the sound on
the space (i.e. with your laptop microphone). Then you have a recording,
i.e. sweep-wet.wav.

Notice that this is NOT the impulse response. To actually get the impulse
response you will need to perform a Deconvolution, since in essence what hap-
pened now is that you acoustically convolved the original sweep.wav sound
with the impulse response of the space, and got the resulting sweep-wet.wav
sound. So now we need to extract that impulse response.

Programming and Synthesis November 20, 2024

Just one thing: when we say space, we may as well say system or any
other transformation, for example a delay effect. In such case you would
not record the sound of the space, but rather the sound out of the effect
plugin/device. Finally, if you do decide to use your laptop speakers and
microphone, what you will capture is mostly the impulse response of your
laptop speakers.

Deconvolution

Deconvolution is the process of reversing the effects of convolution, commonly
used in signal processing to extract useful information or recover an original
signal. In music and in our case, deconvolution can be applied to analyse
impulse responses of spaces, create unique reverberation effects, or generate
experimental sounds.

Deconvolution attempts to reverse this process by estimating the impulse
response’s spectrum H given the output signal’s Y and the input signal’s X
spectra . Mathematically:

X(f) =
Y (f)

H(f)
(4)

where X(f), Y (f), and H(f) are the Fourier transforms of the input
signal, output signal, and impulse response, respectively.

In this way Deconvolution is typically performed in the frequency domain,
as a simple division, simply the opposite of Convolution.

Exercise: Deconvolution in Python

For this assignment, you will be completing the following code to perform
first convolution and then deconvolution and to obtain the impulse response
of your own room! The following Python code implementes a basic decon-
volution process using the numpy and scipy libraries. The python file and
sweep.wav file is provided along this assignment file. The code is copied here
as reference.

0.1 Step 1.

- Use np.fft.fft to compute the FFT of the sweep and sweep-wet signals. - Re-
placeNone with your answer - https://numpy.org/doc/stable/reference/
generated/numpy.fft.fft.html

Programming and Synthesis November 20, 2024

https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html

0.2 Step 2.

- Calculate the appropriate division to get the impulse response FFT - Re-
place None with your answer

0.3 Step 3.

- Use np.fft.ifft to compute the Inverse FFT to convert the impulse response
FFT back to a time-domain signal - Replace None with your answer - https:
//numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html

0.4 Step 4.

Once you have correctly completed the code, you will be able to run it and it
will compute the impulse response and save it as a .wav file. Please upload
this file along with your sweep-wet.wav file, and your python file. If moodle
does not allow to upload python files, copy it as a .txt file.

The code is copied in here for reference, but you will find the original
python file attached to this PDF.

Make sure all your file are inside the same folder for the script to work,
and don’t forget about your virtual environment! now lets go!:

import numpy as np

import scipy.io.wavfile as wavfile

from scipy.signal import fftconvolve

Load the sweep and sweep-wet audio files

sweep_rate, sweep = wavfile.read("sweep.wav")

wet_rate, sweep_wet = wavfile.read("sweep-wet.wav")

Ensure the sampling rates are the same

if sweep_rate != wet_rate:

raise ValueError("Sampling rates don't match")

Ensure the input lengths are appropriate

if len(sweep_wet) < len(sweep):

raise ValueError("'length of sweep-wet' must be longer than

'sweep.wav'.")↪→

Convolution and Deconvolution operations need a specific

Programming and Synthesis November 20, 2024

https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html

length of the buffers. Here we make sure the lengths

are correct, and add zeros at the end if they are not.

Estimating the original length of the impulse response

L = lenght of sweep-wet, M = lenght of sweep,

N = estimated lenght of impulse response

if L = M + N - 1 ,then

M = len(sweep)

L = len(sweep_wet)

N = L - M + 1

We make the length of L to be a power of 2.

It makes the algorithm more efficient.

closest_power_2 = np.ceil(np.log2(L))

new_L = 2**closest_power_2

sweep = np.pad(sweep, (0,int(new_L-M)))

sweep_wet = np.pad(sweep_wet,(0,int(new_L-L)))

########################

START YOUR CODE HERE

########################

STEP 1. Peform Fast Fourier Transform on both signals

sweep_fft = np.fft.fft(sweep)

wet_fft = np.fft.fft(sweep_wet)

STEP 2. Perform deconvolution in the frequency domain

impulse_fft = wet_fft / sweep_fft

STEP 3. Convert back to the time domain

impulse_response = np.fft.ifft(impulse_fft).real

########################

END YOUR CODE HERE

########################

Normalize the impulse response to prevent clipping

impulse_response /= np.max(np.abs(impulse_response))

Programming and Synthesis November 20, 2024

impulse_response = impulse_response[0:N]

Save the impulse response to a new file

ir_filename = "ir.wav"

wavfile.write(ir_filename,

sweep_rate,

(impulse_response*32767).astype(np.int ⌋

16))↪→

Plot the impulse response for visualization

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 4))

plt.title("Impulse Response")

plt.plot(impulse_response)

plt.xlabel("Samples")

plt.ylabel("Amplitude")

plt.tight_layout()

plt.show()

print(f"Impulse response saved to '{ir_filename}'")

Congratulations! you made it this far. If you managed to follow all the
way through, you will be now more familiar with the depths of digital sound
that make possible our music making using computers. Knowledge is power
and this can translate into creative ideas.

Challenges and Considerations

- Noise Sensitivity: Deconvolution is sensitive to noise. And this method
in fact is a simplified way of doing it. Regularization techniques, such as
Wiener filtering, can help mitigate this issue. But those is far more advanced
and beyond this assignment. (https://en.wikipedia.org/wiki/Wiener_
deconvolution)

Conclusion

Deconvolution is a tool for signal analysis, enabling processing of signals and
impulse responses. With Python, we can explore and experiment with these
techniques and eventually think of new creative ways to use this knowledge.

Programming and Synthesis November 20, 2024

https://en.wikipedia.org/wiki/Wiener_deconvolution
https://en.wikipedia.org/wiki/Wiener_deconvolution

0.5 Notes

- Disclaimer: I used chat GPT to generate about 20 percent of this text, and
most of the formatting of the equations and the format of the file.

Programming and Synthesis November 20, 2024

	Step 1.
	Step 2.
	Step 3.
	Step 4.
	Notes

